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Abstract. The general form is given for a force acting on a vortex in the ferromagnet model
without any assumption for the profile of the vortex. The strength of the force is shown to be
written in terms of the Mermin–Ho topological invariant for the vortex in superfluid He3-A.
The discussions are given on the point of how the resulting formula can be interpreted as the
mapping degree for the vortex configuration. These results are extended to the system described
by the generalized spin.

1. Introduction

The purpose of this letter is to give a novel aspect for the result that has been obtained in
our previous paper [1]. The problem concerns a specific force acting on a two-dimensional
vortex in ferromagnets (or spin condensates), which we conventionally called the geometric
force in our previous paper, since it is derived from the geometric part of the starting
Lagrangian for the spin variable. In our previous paper, we calculated explicitly the force
acting on the vortex in the ferromagnet model by adopting a very simple ansatz for the profile
of the vortex, from which we showed that the force has the same property as the Magnus
force. However, although that ansatz is reasonable for the derivation of the Magnus-type
force, it is too simplified to study the general property of strength of the force.

In this letter, we consider the same force as that previously studied without recourse
to any specific assumption concerning the profile function and give the general form for
its strength. On the basis of this formula, we show an interesting similarity with the
coreless vortex in superfluid He3-A, the famous Mermin–Ho relation [2, 3], and discuss
how the strength can be interpreted as the mapping degree of the vortex configuration. The
derivation and the discussion for a vortex in the ferromagnet model is easily applied to the
Pn(C) pseudospin model in the multi-layered quantum Hall ferromagnet. We give a brief
sketch for this extension as an additional remark.

2. Preliminary

We start with a brief recapitulation of the formulation used in our previous paper [1]. As
the starting Lagrangian for the ferromagnet spin system (two-dimensional case), we take

L =
∫ [

Jh̄

2
(1− cosθ)φ̇ −H(θ, φ)

]
d2x (1)
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where the angle variables (θ, φ) are the spherical-coordinate parametrization of the spin
field Jx,y,z:

Jx = J sinθ cosφ Jy = J sinθ sinφ Jz = J cosθ. (2)

In equation (2), the first term is called the canonical termLC , and the termH represents
the Hamiltonian term in the continuous version of the anisotropic Heisenberg ferromagnet
model; it is given by

H = g

2
J 2
∫
{(cos2 θ + λ sin2 θ)(∇θ)2+ sin2 θ(∇φ)2} d2x (3)

where the anisotropy parameterλ should be taken to satisfy 0< λ 6 1, so as to favour the
planar spin configuration [4–6]. A static solution for one vortex is obtained with the phase
function φ = tan−1(y/x), and the profile functionθ is given as a function of the radial
variable r. The explicit form of the profile functionθ(r) is derived from the extremum
condition for the HamiltonianH , with specific boundary conditions atr = ∞ and r = 0,
which we will discuss later. Here we simply assume the existence of the solutionθ(r).

3. Derivation of the force acting on a vortex

In order to treat the motion for a single vortex, we introduce the coordinate of the centre
of the vortex,X(t) = (X(t), Y (t)), by which the vortex solution is parametrized such
that θ(x−X(t)) andφ(x−X(t)). We should make some comments about the effect of
the collective degrees of freedom that are specific in quantum condensates such as phonon
modes, which may cause dissipation of the vortex motion. As pointed out in [7], the
phonon excitation around vortices has the effect of changing the profile, especially at finite
temperatures. In the present letter, the low-energy limit is considered from the outset, so
we neglect the coupling of phonon degrees of freedom. Although our treatment is rather
restrictive, this modification plays no essential role in the topological feature of the force
on vortices.

Now, using the parametrization prescribed in the above, the canonical termLC , the first
term in (1), is written as

LC =
∫
Jh̄

2
(1− cosθ)∇φ · Ẋ d2x (4)

where we have used the relations
∂φ

∂t
= ∂φ

∂X
Ẋ

∂φ

∂X
= −∇φ. (5)

Equation (4) shows that the momentum density conjugate to the coordinateX is given as

p = Jh̄

2
(1− cosθ)∇φ = Jh̄

2
v (6)

wherev is the velocity field

v = (1− cosθ)∇φ. (7)

In our previous paper [1], we have explicitly evaluated equation (4) with the simple ansatz
for θ(r):

θ(r) = π/2(r > a) and θ = πr/2a(r < a)

and derived a force on a single vortex explicitly in that special case. In the present paper
we do not use any specific form for the profile functionθ(r). We will give a general form
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for the force on a single vortex, in particular, we show that it has a very similar structure to
that of the vortex in superfluid He3. Keeping this in mind, we consider the Euler–Lagrange
equation forX:

d

dt

∂L

∂Ẋ
− ∂L
∂X
= 0. (8)

We introduce the forceFC andFH as follows:

FC = d

dt

∂LC

∂Ẋ
− ∂LC
∂X

FH = d

dt

∂H

∂Ẋ
− ∂H

∂X
. (9)

By usingFC,H , the Euler–Lagrange equation (8) can be written as the balance of forces:
FC = −FH . FC is the force that is called the geometric force in the previous paper, whereas
FH represents the force coming from the HamiltonianH and is the same as the potential
forces in the particle mechanics. In this paper, we are concerned with the structure of the
specific force on a vortex, so we concentrate our attention on the forceFC in what follows.
By using equation (6), we can obtain the general form forFC :

FC = Jh̄

2

[ ∫ (
∂vy

∂x
− ∂vx
∂y

)
d2x

]
(k × Ẋ) (10)

wherek in (10) is the unit vector perpendicular to thexy-plane. In the derivation of (10),
we have used the relation

∂vx

∂X
= −∂vx

∂x
. (11)

Here we put the integral in (10) as

σ =
∫ (

∂vy

∂x
− ∂vx
∂y

)
d2x. (12)

It should be noted that the integralσ in (12) does not depend onX, because the
integrand of (12) is a function ofx −X, and with a change of variablex → x −X,
σ becomes independent ofX.

4. Consideration using the vortex configurations

Now let us examine the meaning ofσ . The integrand ofσ is just the vorticityω = ∇ × v.
Using equation (7),ω is expressed in terms of the spin field

ω = ∇ × v = sinθ(∇θ ×∇φ) (13)

and we obtain the final form forσ :

σ =
∫
S

sinθ dθ ∧ dφ. (14)

In equation (14),σ is the integral of a 2-form corresponding to the vorticityω, which has
a topological interpretation. Before discussing it, let us mention the relation between the
vortex inherent in the ferromagnet model and a vortex in the A-phase of superfluid He3
(simply He3-A). Theω in (13) can be rewritten with the spin fieldS normalized to one
(S = J/J ):

∇ × v = S ·
(
∂S

∂x
× ∂S
∂y

)
(15)

which can be checked easily by using equation (2). Equation (15) is just the Mermin–Ho
relation for the spin condensate, which was originally obtained for He3-A [2]. Note that
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S corresponds to thel vector in He3-A. The reason for the appearance of the Mermin–Ho
relation for the spin vortex originates in the similar vector structure for both variables in
He3-A and the spin ferromagnet.

To discuss the meaning ofσ , we consider the boundary conditions for the profile function
θ(r). At the origin r = 0, we can takeθ(0) = 0 in general. On the other hand, atr = ∞,
there exist several possibilities, but we consider two typical cases here: (A)θ(∞) = π

and (B) θ(∞) = π/2. (In the A-phase of superfluid He3, (A) and (B) correspond to
the Anderson–Toulouse and the Mermin–Ho vortices, respectively [2, 3].) In both cases,
Sz(0) = 1 and the spin fieldS(x) are directed upwards, whereas, atr = ∞, Sz(∞) = −1
for case (A) andSz(∞) = 0 for case (B): the spin field is directeddownwardsfor (A) and
outwardsfor (B). In case (A), the vortex configuration can be considered as the continuous
mapping from the compactified spaceS2 to the spin configurationS2, and theσ in (14) has
a clear topological meaning: the mapping degree ofS2 −→ S2. As a result, we get the
quantization ofσ : σ = m (m = integer). In case (B), we cannot consider the space as a
compactifiedS2 because of the boundary condition atr = ∞, but it is rather a hemisphere
D2 with the boundary circle. Now what we have to consider is the mapping fromD2 to
S2, and no topological invariants exist generally. However, all vortex configurations in
case (B) have a common special boundary condition from the boundary circle to the fixed
S1 specified bySz = 0 in the spin configuration. This situation allows the interpretation
of the mapping degree forσ in terms of the concept of the ‘relative homotopy group’
π2(S2, S1) in the terminology of topology: the homotopy class of mappings from the disc
D2 to the sphereS2, where the boundary circleS1 is mapped on the subspaceS1. (The
standard homotopy groupπ2(S2) is one of the mappings where the boundaryS1 is mapped
onto any point onS2.) We still get the quantization ofσ based on it, namely,σ = m/2
(m = integer). Concerning the more details of the relative homotopy group, see [8].

Summarizing the above discussions, the forceFC is written in terms of the mapping
degree of freedom:

FC = Jh̄

2
σ(k × Ẋ). (16)

As discussed in [1], the forceFC corresponds to a Lorentz force acting on a charged particle
in magnetic field, which is of non-dissipative nature. Alternatively, it may be regarded as
an analogue of the Magnus force in superfluids or superconductors [9, 10]. However, this
interpretation is not so exact physically, because the Magnus force is defined to be that acting
on a vortex in the uniform superflow and we do not have superflow in the ferromagnet model
which we have considered in this paper.

5. Additional remarks

We briefly sketch a possible generalization of equation (16) to a model defined by the
complex projective spacePn(C) = U(n + 1)/U(n) × U(1), which can be realized for
the generalized pseudospin in the multi-layered quantum Hall ferromagnet [11]. The spin
ferromagnet model is included as a special case of thePn(C), because it is the model on
the sphereS2 ∼ P1(C). ThePn(C) model is described by then-component complex vector
field, ξ(x) = (z1(x), . . . , zn(x)), and the canonical term is given by

LC = ih̄

2

∫ n∑
i=1

(
∂ logF

∂zi
żi − CC

)
d2x (17)
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whereF = (1+ ξ †(x)ξ(x))N is called the kernel function (N = integer). If we use the
collective-coordinate parametrizationξ(x−X(t)), equation (17) becomes

LC = h̄
2

∫
p · Ẋ d2x (18)

where the momentump is given by

p = i
n∑
i=1

{
∂ logF

∂zi
∇zi − CC

}
. (19)

The forceFC acting on a vortex can be calculated from (18) following the same procedure
as in (10):

FC = h̄
2
σ(k × Ẋ) (20)

whereσ becomes

σ =
∫
R2

∑
ij

gij̄

{
∂zi

∂x

∂z∗j
∂y
− (x → y)

}
dx dy =

∫
X̃

∑
ij

gij̄ dzi ∧ dz∗j . (21)

gij̄ in (21) is the K̈ahler metric that is given by

gij̄ =
∂2 logF

∂zi∂z
∗
j

. (22)

It is also possible to give a similar interpretation for this integralσ as in the case of the
ferromagnet model.
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